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PREFACE

This is Part III of a seven part final report under
contract No. NAS8-21143 between the George C. Marshall
Space Flight Center and the University of Alabama. This
feport includes the results of analytical and computational
work on an idealized geometrical and mathematical model of
two-phase flow in porous media. The model consists of flow
of a viscous liquid in which spherical gas bubbles are
moving along the centerline of a wavy wall tube.

This analytic work was motivated by results obtained
from the experimental pilot model channel and from the
breadboard channel in which individual gas bubbles were
observed by high speed photography to be moving through
well defined, but tortuous, channels. The mathematical
model used herein represents many of the features of the
flow but cannot simulate the tortuosity of the flow channels
experienced in the actual porous media.

This work is based on the fundamental equations of
fluid mechanics which are expressed in dimensionless form
by the proper use of reference variables.

These results show that a high speed digital computer

can be used as a powerful tool in problems of this nature.

viii



Results are plotted in the form of streamline flow
patterns with Reynolds number ranging from near zero to
fifty. The importance of the inertial effect is in-
dicated by the eddy formation at the higher Reynolds
numbers. The effect of the Weber number is also dis-
cussed.

The trends in pressure drop are similar to the
ekperimental data but differ in magnitude because of

difference in tortuosity of flow.

ix



I INTRODUCTION

Motivation for Study.

Computational fluid mechanics has emerged in recent
years as a new tool which holds great promise for the
study of all types of fluid phenomena. Although it can
npt be considered as a replacement for either purely ana-
lytical study or laboratory experimentation, it has in-
creased the flexibility of f£fluid mechanics investigations.
The principal appeal is that solutions to more complex
flows can be obtained than with purely analytical methods
while retaining complete control over the pertinent flow
parameters. Beside the fact that the numerical solutions
are of great value of themselves, they may also lead to
greater insight to a given problem, which would result
in more effective experimentation or to better analytical
approaches.

In this study it is proposed to apply some of the
techniques of computational £luid mechanics to a flow
situation in which three fluid effects interact in a
rather general way; viscosity, inertia and surface tension.
Consider a flow in which a series of‘gas bubbles moves
along the centerline of a tube in which a viscous liquid

flows. The cross sectional area of the tube changes in a

<1-
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smooth periodic fashion with distance along the centerline,
The liquid is Newtonian and the bubble surface exhibits
surface tension. The range of Reynolds numbers to be conQ
sidered is such E%éé the viscous and inertia effects in
the liguid are of the same oxrder of importance. Although
it might be possible to find this situation in a signifi-
cant physical system, this type of flow is proposed only
as a model which is used to study the interaction of these
fluid effects. However, it is hoped that the results of
this work will lead to at least a better qualitative under-
standing of flows in which viscosity, inertia and surface
tension are present. One such case, which provided the
principal motivation for undertaking the study, is the

two phase flow of gas and liquid inbporous media. .é;ééri»
mental studies with which the author has been associated
[13]*%, [14] and other investigations show that fundamental
knowledge is needed as to the motion of gas bubbles moving
through a porous matrix with a viscous liquid. In this
case the flow is governed By viscosity since solid bound-
aries are present. The tortuosity of the flow paths
causes continual accelerations so that f£luid inertia
should be considered. Finally, the surface tension of

the gas-liguid interface determines the bubble shapes.

*Numbers in sqguare brackets refer to references
listed at the end of the paper.



Even limited theoretical results would be of aid in plan-
ning and analyzing the laboratory experimentg in this
field.

The study of the motion of bubbles is a very broad
subject since a variety of flow patterns may be produced
depending on such considerations as the size of the bubbles,
the magnitude of surface tension, the viscosity of the
. liquid and the presence of walls. Although, no reference
has been found in the literature of work which considers
the interaction of a bubble with a viscous liquid to the
extent of this study or which uses finite differences for
fluid dynamics problems involving surface tension, a sum~
mary is presented of some of the relevant papers concerning
the motion of bubbles, along with others treating the nu-

merical solution to incompressible, viscous flows.

Related Work

The modern interest in the motion of bubbles can be
said to have begun with thé work of Davies and Taylor in
1949 [11] in which a combination of experimental and
theoretical means was used to determine a relationship
for the rise velocity of large spherical cap bubbles in
infinite liquids. Haberman and Morton [17] in 1953 made
an extensive experimental investigation of the rise of
bubbles through various liquids of infinite extent. The
papers of Saffman [31], Hartunian and Sears [23], and

Davenport, et al. [10] were also concerned with the rise



of bubbles in infinite liquids. Walters and Davidson
[34], [35] have studied the initial motion of gas bubbles
in an inviscid liquid. Collins [9] collected experimental
data for a large bubble rising in a cylindrical container
and made an analysis based on irrotational flow about an
axisymmetric doublet which is shown to agree with experi-
mental data for limiting cases, but the results involve
ratios of infinite se:ies which are replaced with a semi=-
empirical expression based on experimental data.

In the area of purely analytical solutions to the
motion of a bubble Rybeczynski and Hadamard [3], indepen-
dently of one another, found a solution for translation
of a fluid sphere neglecting fluid inertia. Their results
can be applied to spherical bubbles if the Reynolds numbers
of the flow both outside and inside the bubble is very
close to zero. Taylor and Acrivos [32] extended this work
to include the effects of slight deformation from a sphere
with small inertia forces. Their procedure was patterned
after the one used by Proﬁdman and Pearson [29] to extend
the Stokes solution for flow about a sphere from zero to
low Reynolds numbers.

In contrast to these works which assume small Rey-
nolds numbers, Moore [26], [27] has considered the rise of
gas bubbles by assuming that the flow is irrotational
about the bubble except in a thin region near the surface
in which the flow adjusts itself to a zero tangential

stress at the surface. The principal restriction is that
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the Reynolds number be large, yet still below the separated
flow limit and that the Weber number be small. Moore also
considered a similar problem for ellipsoidal bubbles [28].
Harper and Moore considered the effect of temperature grad-
ients in a bubble surface [21] and later a spherical
liquid drop moving in a fluid of comparable density and
viscosity [22].

The purely analytical treatments described above are
quite significant in the advancement of understanding,
but most require rather involved order of magnitude argu-
ments which are difficult to justify with experimental
results due to the uncertainty caused by such factors as
surface contaminants in the gas-liquid interface. The so-
lution by numerical means of the problems considered in
the above papers could serve the purpose of chedking the
order of magnitude assumptions without this uncertainty.

This situation is similar to the problems encountered
in analytically extending Stokes’ solution for zeroc Reynolds
number flow about a solid sbhere to higher Reynolds numbers.
Early attempts by Whitehead and Oseen were unsatisfactory
[3]. Only recently has such an analytical extension been
carried out by Proudman and Pearson [29] by a matching of
separate asymptotic solutions near and far from the body.
Although this analysis is rather long and highly mathemat-
ical, it is still limited to very small Reynolds numbers
in its range of applicability. However, this problem has

been solved numerically, with good agreement to experimental



results, using finite difference approximations to the
vorticity transport equations, for Reynolds numbers from
zero up to 40, where separation occurs [24], [25], [30].
Purely analytical methods have yet to approach these
Reynolds numbers for fléw about a sphere.

Numerical methods of solution for the complete
Navier-Stokes equations for incompressible, viscous flow
have been vigorously applied by Fromm, Harlow and Welch
of the University of California at Low Alamos, New
Mexico. The problems studied by this group include the
von Karman wake behind a rectangular chinder and wave
motion of a free surface. Some of the notable papers of
this group as listed in the references are [15], [16],
{181, [19], [20]. A large part of the work in this study
has been adapted from the above papers and that of

Thompson [33].

Scope of Study

The present investigation considers three classes
of problems of low Reynolds numbers flow in a tube with
periodically varying cross-sectional area: (1) steady
state flow of liquid only, (2) time-dependent flow of
liquid only and (3) time-dependent flow with gas bubbles.
The Reynolds number based on average velocity and average
tube radius ranges from zero up to two hundred. The gas

bubbles are restricted to maintain a constant volume



and to be equally apaced along the. centerline of the tube
with the distance ‘between centers one wavelength of the
tube.

The equations governing the flow of a liquid with
arbitrarily shaped bubbles are developed. A coordinate
transformation is used which simplifies the..boundary geo-
metry. PFinite difference approximations to the transformed
eéuations-are used to obtain numerical solutions. Typical‘
numerical results are presented for steady state flow_of‘
liguid only. Although numerical solutions for arbitrary
bubble shapes were not obtained, results for the case of

spherical bubbles are presented.



II MATHEMATICAL STATEMENT OF THE PROBLEM

The fluid flow problem under consideration is a two
phase flow consisting of a viscous liquid flowing inside
‘»afwavy wall tube and a series of gas bubbles moving along
the centerline of the tube. In this chapter the equations
of motion governing the flow along with appropriate bound-

ary conditions and constraints will be stated.

Physical Model

The term "wavy wall tube" as used in this paper means
a tube which is circular in any given cross section but
has its radius varying as a smooth periodic function of
distance along the axis. Such a tube could be formed‘by
revolving a periodic function about a line outside of the
wave and parallel to its meaﬁ. See Figure 1 for a cross
section view showing the tube geometry and location of
typical bubbles. We will consider one wavelength of such
a wavy wall tube which extends to infinity in each direction.
The liquid phase flowing in the tube is assumed to have
a constant volumetric flow rate caused by some external
source. The liquid is further assumed to be incompressible

and Newtonian. The liquid velocity at the wall will be zero,

8-



Figure 1. Cross Section of Wavy Wall Tube with Gas Bubbles along Centerline
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The gas bubbles are restrlicted to be centered in the
tube with the distance between bubble centers being one
wavelength of the tuba. In general, the bubbles' shape
and velocity are functions of time and displacement, but
all bubbles are identical at a given time due to the perio~
dicity of the flow. The mass of gas contained in a bubble
is constant so that no transfer of mass occurs across the
_Bubble interface. The gas is assumed to have a constant
volume for the range of pressure variations considered and
gas body forces are neglected compared to those in the
liquid.' The problem is formulated with arbitrary bubble
shapes, but numerical results were obtained only foxr

spherical bubbles.

Equations of Motion for the Liquid Phase

" The flow regime considered is that of low Reynolds
numbers, from zero to approximately two hundred. Except
for zero Reynolds number, the viscous and inertia effects
are of the same order of iméortance and the equations of
motion are the full Navier-Stokes equations. Since the
bubbles are centered and the tube is circularx, the flow is.
assumed to axisymmetric. Using the cylindrical polar
coordinates r,¢, z with z along the tube axis and noting
that under the assumption of axisymmetric flow, the veloc~
ity in the ¢~direction is zero and all partial derivatives
with respect to ¢ are zero, the equations of motion for the

radial and axial directions are [7]
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Ry v v
r _r 1 l0
SE T Ve S TV, 5z o 5.7 5% ,
32y LA 82Vr (1)
MU Tl gy
SVZ avz 3VZ 1 19
3t Vr 3% 25 "5 %" 5 5s
2 2
. d%v, . 1 v, d9%v, (2)
Ve r 3T * T )

" where v, is the component of velocity in the r-direction,

v, is the component of velocity in the z-direction, p is

density, fr and fz are components of body force per unit

volume, p is pressure, v is kinematic viscosity, and t is

- time. The body force in the radial direction will be taken

to be zero here. To equations (1) and (2) we must add the
equation of continuity of an incompressible fluid in axi-

symmetric flow,
oV v av
r r z
55—t 7+ 55— = 0. (3)

The equation of continuity may be satisfied by intro-

ducing the stream function ¥, such that

3y < L3V
90z 7 Vz‘“ r 9r °

(4), (5)

o -1
r = r

Also we introduce the vorticity, ¢, with
0Vy OV,

C"""ﬁ}.—-"s—f-.o (6)

We consider the vorticity to be a scalar since the flow is
axisymmetric and only the magnitude of ¢ is important. By
differentiating equation (1) with respect to z and equatioﬂ
(2) with respect to r and subtracting the results and put-

ting in ¢ and Yy we are left with



d d 3y 9 32 d
- v Ehege = vIEE @+ 5Fl, (D)

and from equation (6)

'
Hll—-'
“L
HI}—-

le_
N
e

' (8)

where it is assumed in the development of equation (7) that
fzvis not a function of the radius, r. Equation (7) is the
usual vorticity transport equation and has the form of a
modified diffusion equation [7]. Equation (8) is the defi-
nition of vorticity in terms of stream function. The two
equations could easily be combined to form a single fourth
order equation involving both ¥ and . However, due to the
nonlinearity of equation (7) it is necessary to use approxi-
mate methods to obtain solutions. In this work finite dif-
ference techniques were found to be well suited. With this
method it is better to have the equations in the form given
by (7) and (8) rather than as a fourth order equation, since
increasing the order of the differential equations increases
the coupling of the difference equations. The nonlinear
character of equation (7) is inherent in the equations of
motion for the regime of flow and would appear in any form
of the equations.

Once the stream function and vorticity are known from
the solutions to (7) and (8), the velocity hay be found from
the definition of the stream function. The pressure gradi-

ents may then be determined from the Navier-Stokes equations
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(1) and (2) and then integrated to find the pressure
throughout the incompressible phase, within an additive ar-
bitrary constant. However, for computer calculation, a
slightly different procedure may be used. Starting with
the Navier-Stokes equations, (1) and (2), multiply (1) by
r, take the partial derivative with respect to r, divide
by r and add this to the partial derivative of equation (2)
with respect to z. Then by use of the continuity equation,

we obtain

1,920 . 1 39 , 32Q
—__T+—_+ =
D(ar r or azf) (9)
v, 2 v, ? V. av ov,_ 2
_ r or z r z
[(ar ) (r + 2 or oz + (az > 1

where

Q=p_szl

Using the definition of the stream function to eliminate

the velocities from (9), we obtain

1,0%0 , 1 30 , 3%@ 9 (1 3¥y12 [l 3y,2
D(5¥T t T 5;7) [Br(r az)] [rzaz]
| (10)
3 1 9 (L 3y, _ (8,1 3y .2 '
2 57l P 3eE 50 - I5piE 0%,

Once the solution for the stream function is known, the

right-hand side of equation (10) is completely known. It



i
may then be considered as a Poisson's equation for the pres-
sure field. The advantages of using this equation are that
. the viscous terms and time derivatives do not appear as
they would in solving for the pressure gradients from the
equations of motion directly. Also, numerically it is
easier to apply the point iteration solution of (10) than
a series of line integrations if the geometry is complex.

For generality equations (7), (8) and (10) will be

nondimensionalized by the following substitutions:
Z =2/b , R=1xr/b , T = Ut/b
S = Y/b%U , W = ¢b/U (11)
B = Q/pU* , F, = bf,/pU?,

where b is the average radius of the wavy wall tube, p is
the density of the liguid and U is the average velocity, -
that is, the velocity required to yield the fiow rate if a
rectangular velocity profile existed at the average tube

radius. The Reynolds number, RN, is taken to be
RN = Ub/v. (12)

The nondimensional forms .of (7), (8) and (10) respectively

are

W 35 3 W 135 W _ 1 .3%W 2_ W, 32w

57 ~ 5z 3R'R’ T R 3R 0z - mubam? T 3r‘® T azzdr (13

1,328 193s 23%s
W= - ﬁ(gﬁ; “RIR T 5520 (14)
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9%B . 1 3B , 3%B _ 3_(L 38y12 1 3842
dR? R 3R  9%? [aR R az)] [R2 -az]

(15)

9 ,1 95,9 ,1 38 3 ;1 9S,12
+ 2 () e (2 I Sl St
BR(R BR)SZ(R az) [BZ(R az)]

The coordinates R and Z do not conform to the shape
of the tube wall or to the shape of the bubbles. This type
of disparity would cause the application of the boundary
conditions at the wall and bubble interface to be very cum-
bersome. However, this undesirable situation can be elimi=-
nated by the following coordinate transformation. Let the
periodic function which describes the tube wall be given by
FW(Z), and the bubble shape be given by FB(2Z).,.both in non-
dimensional form. FB(Z) will be defined to be zero for any
Z outside the bubble. Let

R = [FW(2) - FB(Z)]Y + FB(Z)
(16)

2 = X

Then

_ _R - FB(2)
FW(z) - FB(2)

(17)

In order to transform equations (13), (14) and (15), we
need expressions for derivatives with respect to R and Z-in

terms of Y and X. For convenience, let
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FD(Z) = FW(2Z) - FB(Z)

The partial derivative with respect to R may be written as

L=§.¥=L+§}.L
OR  OR oY R oX
and from (17) we get
) 13
IR = FD(X) 3Y (18)
For the partial derivative with respect to %, we have
o _ X3 _ . 3Y 3
5% = 77 3X t 37 5Y
(19)
) p) 3
7% = 3% * (X, Y5y
where
vas § - — %
G(x,Y) = —ED(X)FB' (X) 2[R FB(X)] FD'(X)
FD* (X) :
(20)
_ FB'(X) + Y FD'(X)
G(X,Y) = - FD (X)

and the primes indicate derivatives with respect to X.
Similarly, expressions for higher derivatives can be found.
Collecting all of these in a group we have

9_ .1 _ 3.
3R ~ FD(X) 9Y ’

(21)

92 _ 1 3%
oR* FD* (X) 9Y2? 7
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3% = 3% + G(XIY)gf ’

2 2
53? §2? + [BG(X ,Y) + G(X, Y)BG(X!Y)

+ 2 G(X,Y) =

(21)

2
2
axay + G (X’Y)ayz

92 92 3G (X,¥) 3 _
OROZ Fnix)[axay + 5 3¢t G(XrY)““r]

with
G(X,Y) = - £B (X)FE(}YC)FD (X)
3G(X,Y) _ _ FD'(X)
Y FD (X)
3G (X,Y) [FB“(X)+Y FD" (X)+G(X,Y)FD? (X)]
oX FD (X)

Under this transformation the tube wall is transformed to
Y = 1 and the centerline is transformed to Y = 0 with the
bubble boundary going to a segment of Y = 0. The region
of interest in the X,Y plane is therefore rectangular with
the boundaries conforming to the coordinate lines. See
Figure 2 for the transformed tube geometry. For ease of

notation let

G G(X’Y) 7

_3G(X,Y)
® oX ¥
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Figure 2.

Ll S

Wavy Wall Tube after Transforming to Y,X Coordinates

R - FB(X)
FW(X) -FB (X)

FW(X) describes the shape of the wall in dimensionless form

FB(X) describes the shape of the bubbles in dimensionless form

81
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_ 9G(X,Y)
Gy - 9y

Equations (13), (14) and (15) now become

oW 1 35 . 35,3 W
3 - X O ITlFP YRR (X))

1 58
+ FOTX) TFD (D) T+ FB (X) ] 5—[’5‘ + G’a“]

_ 1 . 1 32W . 1 ___3_[ w ] (22)
T RN'w¥p?(X) aY? FD(X) 3Y'FD(X)Y+FB(X)
3%W 92w 32W

+ 5%z + (G4+GG )aY + 26575y + G2 5§r} ’

W= - 1 { 1 228 _ 1 98
FD (X) Y+FB(X) FD2(X) aY? FD(X)[ED(X)Y+FB(X)] 9Y
+ 315 + + 2 225 + 8 23
X (Gx+GGY)aY G3ysx t6* ayz (23)
1 3%B 1 3B . 3B
FDZ(X) py2 & FD(X) [FD(X) Y+FB(X)] 3Y * 3x2
3 5 d%B
2 98, 2
+ (22) +
[FD (X) Y+FB(X)]* 9%
FD(X) [FD(X)Y+FB(X)]?® 92 3Yd%
2 32%s

* FD?(X) [FD (X) Y+FB(X) ]2 0Y04

2 39S 32sS
FD(X) [FD(X) Y+FB(X) ] 3

+

|
(=5
3

_ 2 9%s 3%8 _
FD? (X) [FD(X)Y+FB(X)]2% 3y? 5z?
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where the partial derivatives with respect to % are given
by the expression (21).

The mathematical effect of the above transformation is
to shift the complication of irregular boundaries to the
internal field equations. But since it is already conceded
that the possibility of analytical solutions is very remote
and numerical methods will have to be used, this complica-
tion in the field equations is of little consequence when

compared to the simplicity of the transformed geometry.

Boundary Conditions for the Liquid Phase-

The physical requirements that the liquid flowing in
the tube must meet are that the flow be axisymmetric, the
total velocity at the wall be zero, and that the flow
field be periodic in one wavelength of the tube. These
constraints will be translated into mathematical boundary
conditions for the equations of motion.

In axisymmetric flow the radial component of velocity
must be zero at the centerline along with the partial de-
rivative of the axial component with respect to the radius.
Denoting the nondimensional axial component of velocity

by u and the radial component by v, these conditions are

ou
at R=0, v=0 and 33 = 0. (25)

The first condition above means that the centerline is a
stream line with a constant value of S. We can arbitrarily

set the value of S along this boundary to zero since only
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differences and derivatives of stream function are signifi-
cant. Using the fact that the value of u must be finite
at the centerline and the two conditions above, the follow-

ing conditions on S and W at the centerline result

at R=0, S=0, W=0

. (26)
.Q_S_ = 0, i‘% = 0.
3R aR

Since the flow field must be periodic over one wave-
length of the tube,; the corresponding conditions on S and W
and their derivatives are that they are periodic along with

their derivatives with respect to Z.

S(R,O) = S(R,ZC) 7
W(R,0) = W(R,2C),

27
25| .28 27)
921z=0 9Zlg=2C
W
0Zlz=0 9Zlg=2C

where C is the dimensionless half wavelength of the tube,
equal to the physical half wavelength divided by the aver-
age tube radius, b.

Since the total velocity at the wall is zero, the
partial derivatives of S with respect to R and Z are both
zero and the value of S is constant along the wall. Since

the value of S has been set equal to zero along the centerline
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the value at the wall is determined by the wvolumetric flow

rate., The volumetric flow rate, Q, is
wall
Q = 2mrv,dr.
0

Using the definition of the stream function Yy from equa-
tion (5) and the fact that Yy is zero at the centerline,; Q

becomes
Q= 2m Voayy

but from the way that U, the average velocity was defined,
Q is also

Q =T b2U.
Therefore, relating ¢ to S, we have that

Swall =172

In the transformed coordinates Y and X

at Y =1, S =1/2
3S
5y = O
_ 1 1 2,92%8
"Emwmm Gwem T e (28)

In order to solve fo; the pressure field using equa-
tion (24), the boundary values of P must be established.
Since only pressure gradients and differences are of in-
terest, an arbitrary constant pressure may be assumed to
exist on the centerline at the beginning of the section

of interest. The expressions for the pressure gradients
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along the centerline, the wall and across the two ends of
the section can be obtained from the Navier-Stokes equations,
(1) and (2). Starting from the fixed pressure point, these
expressions can be integrated along the boundaries of the

region to provide the boundary values for equation (24).

9
Along the centerline, noting that v, and —%% are
both zero, from equation (2) we obtain
ov v Vv 92v
3 Z Z 2 4
Fg =-p3yg_ "~ 0 Vose t FZ + uf2 NT 2 322]' (29)

In order to simplify the expression in square brackets on

the right side in the above equation, consider

Using the'equation of continuity which along the centerline

is
avr avz
2 oxr + 2z =0
so that
2
3L 3_ 1 AV, 3°vVy,
3r = 3z07 3 az) 92
1 32VZ Bzvz
2 3gz2? ar2
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Since at the centerline

3p 5 3%y, 1 329, 2 14
3z = Fz T P 5plee) T 7 0 G 2 W5z

Nondimensionalizing and transforming to Y and Z as before

L 1 3_(3254 _ 1 g_(azs)z
2  FD%(X) 9T 9Y? 2FD* (X) 9X 5Y?2

(30)

At. the wall both velocity components are zero and
again from equation (2) the pressure gradient in the axial

direction is

2 . 2
B = p, + [a vz, 139z 3 vz] 31
3z 27 M52 T T 922 | (31)

Equation (31) may be written

In nondimensional form this is

%
!

9
3R {RW) (32)

@
N
N

(R) (RN
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and after transformation, we have

3% *+ G 3y = F, - TRy(Ry RORW. (33)

But from equation (1) we can obtain an expression for the

partial of P with respect to R as

3P _ 1w (34)
PR RN 9Z

After transformation this becomes

3P FD(X) ,9W

P

5W
) = 3% * G3%) . (35)

Combining (33) and (35) we have

3P _ n . o FD(X) (OW 3w
5= Fz "6 g Gt ¢ 5

(s34

(36)
1 , d
(RN)FD (X) [FD (X) Y+FB (X) ] oY

{ [FD(X)Y+FB(X) W} |

Equation (36) is an expression which may be integrated to
give the pressure along the wall in the X,Y plane.

At the two ends of the section, Z = 0 and 2 = 2C,
the radial pressure gradient is needed. From equation (1)

we find, recalling that £, is zero,

v v oV
9P = - p....__:E - pv —L - p v —
ar ot r ar Z 3z (37)
3%v,. 1 9vy v, 3%v,
tulaer Y v e T F Y el
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The viscous terms above may also be simplified using the

vorticity.

X4 9 9Vy Vg

3%z = 3ZL77% - "3T)
2
_ ] Vi _ 3_(~ XE _ 8vr)
3z 2 or r T
2 2
3 Ve ZE l avr ] Vi
=922 "zt yor toarz

Making the above simplification and then nondimensionaliz-

ing and transforming to Y and X, equation (37) becomes:

P _ FD (X) 3%s FD (X) 25 2
3Y T FD(X)Y+FB(X) OT0Z © |[FD(X)Y+FB(X)]° (98)
_ 1 38 93%s
[FD(X)Y+FB(X) ]2 9% 0YdZ (38)

+ 1 38 3
[FD(X)Y+FB(X) ]2 9Y 33

s FD(X) W
2 RN 9%

where the derivatives with respect to Z are given by (21).

Bubble Conditions

Since the flow in the physical model has been re-
stricted to be periodic, it is sufficient to consider
only the bubble located in a typical wavelength of the tube.
The bubble is of constant mass and it is fﬁrther assumed
that the gas inside is not compressed so that the volume is

also constant. This assumption is made to insure that the
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bubble pattern in the entire tube remain periodic. If
the volume of the bubbles were allowed to vary with
pressure, the bubbles would have different volumes for
the same mass due to the pressure gradient in the tube.
This assumption is not a serious limitation on the study
since the change in pressure over the distances moved by
the bubble in a typical calculation can be made negligi~
ble compared to the absolute pressure in the tube, simply
by raising the overall pressure level. The motion of the
gas inside the bubble will be neglected in comparison to
other effects. Since the gas body forces are neglected,
this means that the pressure inside the bubble is every-
where the same at a given instant. This assumption also
means that the bubble cannot support any shearing stress
at the interface with the liquid. Finally, it is assumed
that the fluid particles composing the gas~liquid inter-
face remain always in the interface. This means that in
order to follow the motion of the bubble all that is re-~
quired is to keep track of particles at the interface.

The boundary conditions that must be satisfied on.
the bubble surface are that there must be equilibrium
among inside and outside pressure, surface tension, and
normal viscous stress at the bubble surface and that the
shearing stress in the liquid at the bubble surface must
be zero.

Since the bubble is symmetric with respect to the z

axis, the normal to the surface lies in a r,z plane with
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Bubble Cross Section

{ de/2

de/2

Element of
Surface Area

Figure 3. Bubble Geometry
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components given by

dfb
dz i

Noa =
agb, 2 = - [ dfb, 2
\[1““3?’ \/“‘&?’

nz = (39)

where fb(z) is the function which describes the bubble

surface in the r,z plane. See Figure 3 for a sketch of

the bubble geometry and an element of surface area, dS.
Denoting the differential force on dS due to the normal

viscous stress by dF , and assuming positive in the direc-

tion of the outward normal to the bubble,

where Tij are the components of the viscous stress tensor

in cylindrical polar coordinates. From Aris{l] for axisym-

metric flow, the non—-zero components are

avr v
Toy = 211'5—];:— ’ chd) = 211;_:—
(41)
ov 8V ov
— z r _ Z
Trz - U(‘é"‘r‘.— + az ) ¢ Tzz zu __8'_27 °
Then, we have
avr BVZ Bvr
_ 2\ 3y 2M (3¢ "3z) dfb
dF, = dfb, agp * dz  * (42)

1+ (35 1+ (g7
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sz
211 0% dfb, 2 (42)
+ ( )
dz
1+ (dfb>2

Let dFg, be the contribution of the surface tension
forces in the gas-liguid interface. These forces are com-
posed of the surface tension o, multiplied by the length

of an edge of dS times the cosine of the angle between the

normal to dS and the surface tension forces along the edge

in question.

dFgye = = 20(fb)(d¢)( ) - 20 ( ) (43)

But
lao| = - §2 az ,
6 = tan-l(%gg)
d?fb
ae dz?
dz ~ dfb
1+ (32 )2
therefore,
d2fb
dr _az% + .
= -0
st dfb
(1 +(G " 1 (fb)J1 + (22

[(fb) do \Il + (’3‘?‘)2 dZ]



31

Since

ds = (£b) (d¢)\/1 + (22 gz,

equation (43) becomes

d?fb
dz? 1 .

aF_, =-o0 + as  (49)
t 373
® (s (2R 2%/ (fb)\,1+(§§9)2

The two terms in brackets may be recognized to be the re-

ciprocals of the curvature of the bubble surface, the first

is the reciprocal of the radius in the r,z plane and the

second is the reciprocal of the radius in the plane con-

taining B and lying perpendicular to the r,z plane.
Combining (42) and (44) and adding in the internal

and external pressures, the condition for the equilibrium

of normal forces at the bubble surface becomes

d%fb
T dz?
Pout = pin -0 afb 3/2 + dfb
[1+(gz ) %] (£b) || 1+(55) 2
(45)
21 0V, 9V, 3V gFp 9y ggp
arh _ [ or -5 + TH2)dz t 3z (@2 )] -

1+(gz ) ?

Replacing the velocity components with the stream function,

nondimensionalizing and transforming to X,Y coordinates
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yields:
= ¥ W
Pout = Pin WN[pl + 92] +
1 2 39S 38
T [Fo(X) ¥+ (X) 7T (3% + G 37)
RN[1+ (35 ) 2]
(46)
2 92s 28 328 dFB
- FB(XFD(X) lavex * Gy oy *+ G pyzlll - v
e 1 3s 1 3%s _
FD(X)FB2(X) ° FB(X)FD? (X) 5Y?
1 ,8%s A%s dFB
*§T§T(——7 +(G +GGY)aY + 26 3ye% * G2 5"7)]dz ,
where
d%FB
i = - ax?
)
i 1+ (dFB) ]
i _ 1
P2 arFB

FB(X)\[1 + ()2
where WN is the Weber number,
WN = pbU2%/g

Referring to Figure 3, the tangent to the bubble sur-

face will be asSumed to be positive if the angle between t
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and the z axis is between =90 and 90 degrees,

t,. = t, = (47)

The tangential shearing stress at the bubble surface in

the r,z plane is denoted by Tnt and may be written

Toe = Tij n, tj (48)

The components Tn¢ are identically zero since the flow is

axisymmetric. Using equations (41), (39) and (47) the

above expression may be written out explicitly,

dfb
Bvr dz (avz avr) 1
T = 2U + u +
1+(3) 2 1+($52)
(49)
v, v, (dfb)2 ov, - %52
+ w5 + T5z) +2u oz .
dfb
l+(dz l+(dfb) 2

After the stream function is substituted into equation (49)
for velocity, and the shearing stress set to zero, the
nondimensional boundary condition in the X,Y plane be-

comes
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4 3%s 98 32%s
lwmy Gox * % 57 * € 537

1 .38 9S.. AFB
By Bt eyt It

(50)
- (el 328 _ 1 9s _ 3%s
FD (X) 9%z FB(X)FD (X) 9Y 0X?Z

L> >4

_ 39S _ 3%s 2 328 dFB,2y_
(Gx'l‘GGy)W 2G IY5% G Wf]’{l - (a"i‘") }= 0.

If the surface tension forces become very large com-
pared to the other forces acting at the bubble surface,
the Weber number may be taken to be zero and a bubble will
be spherical at all times. Equation (46) in its present
form is not suitable to be used as a boundary condition
for the bubble. However, the réequirement that the bubble
not change shave may be used to develop a condition on
the velocity distribution along the bubble surface and
therefore a condition on fhe stream function distribution.
Let Vr/b and V2/b be velocity components at the bubble
surface relative to the bubble center. If the bubble is
not to cliange shape the normal wvelocity at the surface
relative to the bubble center must be zero. This requires

that

_ _x/b_ (51)



observer, the velocity components, v

35

where %%9 is the slope of the bubble surface. This

‘condition would apply for any shaped body which is not

changing shape. If the bubble center is moving with a
velocity Vo in the axial direction, relative to a fixed
" and Ve at the
surface, relative to a fixed observer become

v
- r/b
Vv, = Vp + ~SF5 (52)
dz
Ve = Vr/b . (53)
From (52) one obtains
v
= L .—.——1::-._-..—
Ve = Vy T T@GEp
dz
Let VT be the dimensionless translational velocity and
using the dimensionless stream function, the above
equation becomes
3s
_ 138 3%
VT-§—§+RdFB‘ (54)
dZz
Transforming this to X and Y coordinates yields:
3S K
V. = 1 98 + -5—. * GBY {55)
T - FB(X)FD(X) 0Y FB (X) dFB

o
=
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But on the bubble surface

so that equation (55) reduces to

35
7%
V... == ceamomemmmm—
T rBX) g—%ﬁ
or
35 _ pp(x) 9B
8 -rey T2y (56)

Since 85=0 at each end of the bubble on the centerline,
the stream function distribution on the surface may be

determined in terms of Vi by integrating equation (56).

However, since Ve is unknown an iteration procedure will

have to be used between V,, and the. liquid field equations

T
to determine VT at each time step.

Initial Conditions

Equation (22) is time dependent and since the three
equations (22), (23) and (24) are éoupled, the variables
describing the flow field will in genefal-be a function of
time. Therefore, initial conditions must be supplied

for the solution of the field equations.
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One possible initial condition for the flow is to
let the f£fluid be at rest for times less than zero and at
time zero require that the flow rate be a constant. This
amounts to an impulsive start and requires theoretically
infinite pressure gradients -and veloecity gradients at the‘
wall. However, this type of start-up can be approxi-
‘mated numerically, although it is not well suited for the
case of flow with bubbles with a pressure boundary condi-
tion since the resulting numerical approximations to the
pressure gradients become very large. This initial con-
dition is appropriate when it is desired to study the
development of flow patterns with time, starting from rest.
The technique is to set the initial vorticity to zero in
the interior and solve for the corresponding stream function
from equation»(23). Application of the boundary conditions
at time zZero will result in a region of concentrated vox-
ticity due to the large velocity gfadients near the wall.
This start-up flow corresponds to a potential flow field
with a viscous boundary layer near the wall.

A method for starting the solution which is better
suited to flows with bubbles is to use an initial guess
which is close to é fully developed viscous flow and which
is constrained to satisfy the bubble boundary conditions.
In the case of a bubble with a pressure boundary condition

this avoids the large pressure gradients associated with
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the impulsive start. Also, since the motion of bubbles
in a developed viscous flow is of most interest, the time
for the liquid flow to become fully developed is decreased.
The initial guess used was an adaptation of Hadamard's [3]
solution with the stream function referenced to the fixed
wall and adjusted so that the liquid boundary conditions

at the wall were satisfied.



IITI NUMERICAL METHODS

The field equations and accompanying boundary con-
ditions presented in Chapter II are hardly amenable to
analytical solutions. The flow is a function of three
4 independent variables, two spatial coordinates and time,
and the partial differential equations are nonlinear and
coupled. Undex these conditions it is propexr to seek
approximate solutions.

Since the flow regime of interest is that of Rey-~
nolds numbers from zero up to approximately two hundred,
based on average tube radius and average axial velocity,
simplification of the equations on physical considera-
tions such as is done for potential flow, viscous boundary
layers ‘and creeping flow is notipossiblen Therefore, it
is necessary to use other approximation methods.

During the course of the investigation, considerable
effort was directed toward use of Galerkin's method or some
other integral technique such as the so~called local poten-
tial concept [2], [6]. These approaches have the appeal.
that they consider the flow field as a whole rather than
point wise and yield an approximate solution based on
minimization of a scalar variable which is defined in

terms of integrals over the independent variables.

..39 -
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Unfortunately, such a scalar may not always have true
physical significance., It was found that the use of the
integral techniques investigated for this problem led to
a great deal of complexity in the evaluation of integralé
and application of béundary conditions. In fact, a suit-
able integral formulation for the bubble boundary condi-
tions was never found. Even if this difficulty could have
been overcome, it seemed that the mathematical complica-.
tions involved in trying to apply this particular method
almost completely obscured, rather than illuminated,
the mechanics of the flow. For these reasons this attack

was abandoned.

Finite Difference Approximations

A method which is quite different in concept from
the above integral techniques is the method of finite
differenee approximations. This method replaces the
continuous flow field with a set of discrete points and
seeks to satisfy a set of-algebraic equations at each
point which are derived from the differential equations.
The approximation premise is that the true solution to
the differential equations may be approached as closely as
desired by taking the discrete points sufficiently close
together. This premise is intuitively reasonable and can
be mathematically proved for linear and some nonlinear
partial differential equations, but for most nonlinear

equations has not been proved [8].
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nite difference approximations, a square
size H is superimposed on the section of
tube shown in Figure 2; bounded by the
wall and the two dotted lines at each end
The dimensions were chcgen to be an inte-
H with the number of node points in the Y
M and the number in the X direction being
ypic&l point i,j as shown in Figure 4. If

inuous functicn of Y and X having continu-

first and second derivatives in the region of interest,

using Taylor ser

ies expansions, it may be easily shown [4]

that
Y S s = S- .
9 +1," -
gy = el o)
. s + . s o s
R TR 1S Tl 5 Tl YT S
oY ' H
S S =7
a . ‘+ - 3 '_
ox = P s om
PR + ¢ - P
32-3 - Sl,J'I"l Sl;]"l ZSI’J + O(Hz) ,
X H

where 0(H?) indi

of the order H s

cates that the terms not written out are

quared. By truncating the second order

-terms in the equations (51), the well known central dif-

ference approximations to first and second derivatives

are obtained [4]
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i"lrj

¥

Figure 4. Typical Finite Difference
Grid Point
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In some cases central differenée approximations cannot
be used since some of the required points fall outside the
boundaries of the problem. One method of dealing with this
is the use of reflection points outside the boundaries.
Another technigque is to use one-sided differences. The

backward difference approximations of error order H squared

are
35, . - 48, .+ S, .
3s -1 -

&S i,3 ;H '] i-2,] 0 (H2)

28 55 45 S +58)
, 28, . - 58, .+ 4§, . - S, :
5928 . i,3 i-1,7 i-2,7 i=-3,73 + 0(H?)
3yt H?

and the forward difference expressions of the same error

are

—BS' . + 4S' . » — S- .
i i+1 i+2
- v J 2H’J rJ + 0 (H2)

ol @
=l
!

(59)

3%5 _ 25i,3 ~ 55i+1,3 * 45i+2,3 = Si+3,3 \

with derivatives with respect to X given by analogous ex-

pressions [4].

Difference Equations for Steady State Solutions

For flow of a liquid only in a wavy wall tube, a
steady state flow pattern may be produced for a certain

range of flows. In order to investigate such a flow, the
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first term is dropped from equation (22) so that time no
longer appears in the equations (22) and (23) or their
associated boundary conditions. 1In the absence of any
bubbles, FB(X) is identically zero along with its first

and second derivatives and
FD(X) = FW(X)

The expressions for G(X,Y) and its derivatives in (21)

in the absence of bubbles are simplified to

G(XIY) Sl 4 %‘%}({}59_
3G (X,Y) FW' (X)

3T = - W (X) (60)
3G (X,Y) _ YFW" (X) + G(X,Y)FW' (X)

oX T 7 FW (X) .

The transformed eguations of motion for steady state flow

may be written

1 219%W 92w W 32¢
— W , 9°W (g +ge )W
FW? (X) te ]ay2 D (Gu+GGy) 57 + 26 ==y

1 3 W RN 3 W 38 . 38
¥ FW? (X) ylyFw(x) 1t FW2 (X) wlvFmm ] 3x + G37) (61)

RN 9S ,9W oW, _
i rex T e T O
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- ”l l 2 9 9
W= (e ¢ Iy toaxe

(62)

1 58 528

+ [Gx<+ GGY-W]W'*'ZGW .

Central difference approximations may be used to form the

difference equations from (61) and (62).

1 1 2
s 1 u—a——————— + ) s ) 0 - 3 .3
HZ[FWZ(X) ¢ ](Wl+1'3 FWi-1,3 2W1'3)
bW + W - W, ) + ==(G, + GG )
g2 & i.3+1 i,j-1 i, 2H'"x y’*
(We o0 o = W, o o) + —(wW - W
l+llj l“l,] 2H2 i+1,j+l i+1lj—1
(63)
WDY
- W. C. WL . —
M1+t Wie1,5-1) T e )

RN
—  wWDY[S. . - S, . + G(S, . - S, .
4H2FW? (X) [ i,j+1 i,j=-1 ( i+l,J 1-1,3)]

RN ) [

. . - S, W, .., - W
4H?Y sz(x)(sl+l,3 Sl-l,J i,j+1

i,j"'l

i41,3 ~ Wi-1,90) = O
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where

— [4
WDY = =—¢7qH -0 !

and from (62) we have

11
Y EW(X) Wy 5 = gy * 601 (Si41,5%8501,57284 ,5)

1

orr + - oy . =S, :
H[Gx GGy Y FW (X~(Sl+1rj Sl-lrj)

(64)
+ l-5-(5 +S, ) + —lr G(Ss
H i,3#41° 71,3~ 1 2H i+1,9+1" 1+1, -1
3 j=

=8i.1,541%84-1,5-1

Equations (63) and (64) represent 2(M-2) (N-2) algebraic
equations for S; )3 and W, )5 at éach internal node point.
With the availability of high speed digital computexs, the

most efficient method of solving such a large number of
equations is iteration. To put (53) and (64) in suitable

form for iteration, equation (63) is solved for W, '3 and

equation (64) for S, This is not the approach suggested

i,3°

by the differential eqguation, but is used since Si . does
: ’

not appear explicitly in equation (63), but W, 3 does. The
14

iteration equations are
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1
+ G% + 1] W, o= [ + G2].

2[ v TPWE(X)

FW2 (X)
W; s+ W ) + W + W + E(Gf+GG )e
(Wiy1,5 * Wiog,4 1,541 T Wi, g-1% F(Cy+GGy)

o (W,

it1,5 = Wi-1,3) * % G(Wy

i+1,5+1 " Yis1,5-1

HeWDY (RN) (WDY)
Wioi,5+1 ¥ Wiv1,5+1) * sEwz(x) * T aEwi (X)

85,541 7 Si,3-1 ¥ G(5547,5 = Si-1,4)]

RN
el o ., - . .
4y sz(x)( itl,3 = Si-1,3

) e

Wi 541 + Wy, 521 ¥ GWipq 5~ Wi 9,501, (65)
2[—~—1—— + G% + 1]8; . = [———l—— + G2](s + 8 )
FW2 (X) i 7 'Fw? (X) i+l,3 i-1,3

1
Yy Y sz(x)] * 55,5+t Si,5-1

H
+ 5[G, + GG

+ % G(Si+l;j+l - Si—l,j+l - Si+l,j_l + Si_l'j—l)

2
+ Y H? OFW(X) Wy 5, (66)
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The iteration procedure was the Gauss-Seidel method with a
relaxation parameter [8]. The Gauss-Seidel method uses
improved values for the unknowns at the node points in the
iteration scheme whenever they become available. That is,
if the field is being swept in the direction of increasing

i and j, then at a point i,j, for the k-th iteration, the
-values used at i-1l,j and i,j-1 are from the k~-th iteration
and the values used at i+l1l,j and i,j+1 are from the (k-1)-th
iteration. The use of a relaxation parameter means that if

S* is the value at k,j from the k~th Gauss-Seidel itera-

i3
s k .
tion, then the value taken for si 3 is
[4

K k-1

i,J 1,]

k-1
where S, ., is the previous values of S; . and w is the re-

i,] 1,7
laxation parameter. If w is less than unity, the process
is called under relaxation, if w is greater than unity it
is called over relaxation. Since the equations are non-
linear no attempt was made to determine ® analytically.

The values used were determined by trial and error with

short computer runs.

Difference Equations for Time-Dependent Solutions

If the first term of equation (22) is retained, it
is necessary to make an approximation to the partial de-

rivative of vorticity with respect to time. One method is
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to use central differences with respect to the time steps

so that

+ -
p w2t
oW I 1,3 (68
9T L - 2F )
1;]

where the superscript indicates the number of the time
step. The other terms in equation (22) could then be ap-
proximated by central differences with respect to the spa-

tial variables, at the p-th time step. It would then be

possible to solve for WE+§ explicitly in the form
’
p+l _ .p-l P P
W: T =W, , + .
1,3 =W,y t2ET; 4687, ) (69)

where E is the size of the dimensionless time step, and
Pi'j(sp,wp) is a function of values of S and W at i,j and
adjacent points. This procedure yields the values of vor-
ticity at the (p+l)th time step based upon the values of
vorticity at p~1 and p and S at p. The values of S at p+1
could then be determined from equation (66). It has been
shown that in order for this explicit method of integration
in time of parabolic types of equations to be stable, the

maximum time step, is of the form

Epax = AH? (70)
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where A is a parameter which depends upon the exact form of
the partial differential equations [15], [5]. This re-
striction means that in practice it would be necessary to
take a time step smaller than AH? in order to be conserva-
tive. This restriction is not a property of the partial
differential equations directly, but occurs because the
‘numerical approximatioh scheme is explicit with respect to
time.

If an implicit method on time is used, the stability
criterion is much less stringent and for some cases the
method may be unconditionally stable. In fact, the optimum
time step for an implicit method is approximately the same
as the maximum time step in the explicit method [12]. Also,
there is an indication that an implicit method can more
truly reproduce the nonlinearities of the liquid flow [33].

An implicit method which was presented and used by
Thompson [33] was used in this study. It has the advantage
- of being simple enough to be easily used for computer cal-
culations and still retain the inherent advantages of im-
plicit.methodsg For this case, we use a backward difference
approximation to the partial derivative with respect to
time which has an error of order E2.

P p p-1 p-2
Wiy, Mig T MMay * W
T - 2E (71)




Introducing the following abbreviations

FD(X)Y + FB(X) = DiY

FD(X) = DiD
FW(X) = Div
FB(X) = DiB

51

(72)

and using central difference approximations to the spatial

derivatives with G(X,Y) and its derivatives given by (21),

equation (22) is approximated by

3w 4Wp—l + wp”2
i, 1,37 8,3 WY g g L o+
2E 4H2DPiD 1,341 i,j-1
G(Si,q = = S:_, )] + L (s
i+1,73. i-1,3

4H? (DiY) (Dip)  ++1/3

Si-l,j)'[w - W + G(W

i,3+1 7 Mi,5-1 i+1,3 = Wi-1,300 =

1 1 2
+ G W. .+ W, . o~ 2W. .
H-WDY H
-+ e + W. N + Wn . - ZW- . + = G +GG M
2 DiD i,j+1 i,j=-1 1] 2( x Y)
(w? - wP ) + &

(73)

iv1,5 " Wio1,9) Y Wi, 941 T Wik, 5-1 T Vie1, 94

Wi,
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where the quantities without superscripts are at the p=th

time step. Solving this equation for W, 4
14

4B i 2 P"l p—2
+ + + . , == . y - . .
[3 - (1 + G )]Wl'J LU

DiD?

E - WDY
2H? (DiD) [Si,541 = 8i,35-1 * €(8441,5 = 851,51

E
2R (biy) (0iD) i+l,3 ~ Si-1,50 Wi, 541 7 Wi -1t
(74)
- 2E 1 2
+ G(Wi+l,j Wi"'lrj)] + H2RN (DiDz + G )(Wi+l,j+

HWDY

* >DpiD

H .
Wi-1,3) Wi gel T Wy, 5o 7 (GgtGyC)

G,
Mig1,5 = Wio1,5) * 70541, 541 = Wiea,9-1 "Wi-1,3+1

+Wi—l,j—l) .

From equation (74) it may be seen why this method is called
implicit, the values of vorticity at i,j for the p-th time
step depend upon the values at the two previous time steps
and stream function and vorticity at the p-th step. There=-
fore, an iterative procedure on_ the time integration as well
as the spatial is needed. Using central differences on

equation (23) we find that

1
DiD?

1

2
( piD?

2 —
+ G° + l)Si'j =

2
+ G )(Si+l,j + Si_l'j) +
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H 1
+ 316y + 66, - THTEY I Si+1,5 ~ Si-1,3 (75)

G
ST U TS N O B B E(Si+l,j+1 = 5i41,3-1 7 Si-1,4+3

2, . "
+ Si"'l,j"‘l) + H DiY Wi'j °

It should be noted that the equations of motion in
this problem have been reduced to only one time-dependent
equation and a coupled equation in which time does not
appear explicitly. The incompressibility of the liquid
flow made this possible. In other types of fluid flow,
where such a simplification cannot be made, the implicit
methods may not have the advantage that they do in this

problem.

Difference Equations for Pressure Calculations
Equation (24) may be approximated also using central

differences. Let

SY = S -8

i+l,3 i-1,3
SYY = Si41,5 ¥ Sim1,5 T 51,5
SX =S, 7 S; s (76)
SKK =83 541 % 55,5-1 7 %554
SYX = 8i41,3+1 7 Siw1,3-1 7 Si-1,341 ¥ Si-1,5-1
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SZ = SX + G « SY

S22

SXX + ¥ H(Gy+GGy,)SY + % G . SYX + G%sYy (76)

SYZ = SYX + 2HGY-SY + 4G-SYY

From equation (24) then we get

1

2 — 2
2(0 + o7 ¥ GO)By 5 = (G + G (Byyg, 5+ By, )
H 1 _ :
+ Bi,35+1 * Bi,y-1 * 2(5ip.piy * Gx *+ GGy)
(Bi+1,5 = Bi-1,3) * % G(Bjy1, 541 ~ Bi+1,5-1 (77)
(sz)® _ __(sz)(sYZ)

"‘Bo » + Bn »
i-1,3j+1 1-1'3-1) 2(piy)* 4H (DiD) (DiY) @

(syz) ? (SY) (s22) _ 2(SYY) (822)
8H? (DiY)2(DiD)2  H(DiY)? (DiD) H?(DiY)?(DiD)?

Finite Difference Form of Liguid Boundary..Conditions
The boundary conditions for the liquid phase not
adjacent to the bubble are the same for steady state and

time-dependent solutions. In the X,Y plane

i = 1 at the centerline
i=Mat wall
j=1at X=20

j =N at X 2C.
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The numerical form of the conditions (26) 'in the X,Y

plane become

S = ( =

1.3 v W30
5 - s N (78)
0,3 2,3 ' 2,3 © Z 3Ij

‘where the subscript 0 corresponds.to an imaginary grid line
a distance H below the centerline.

The periodic end conditions (27) are

Si,1° %i,n
W =
i,l Wl,N
(79)
Si,0 = Si,N-1 r Si,n+1 = 53,2
Wi o0 Wi n-1 ¢ Yi,n+1 = Wi,02

where the subscripts 0 and N+1 correpond to imaginary
grid lines a distance H past the end boundaries.
At the wall in the X,Y plane the finite difference

forms of conditions (28) are

S 3 = .
M, 0.5
SM+1,j = SM_l,j (80)
2 1 2
, = - + G . - 0,5
", 3 HZDiV(DiV2 )(SM'lrJ )
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The values of pressure along the boundaries in the
X,Y plane may be determined by numerically integrating the
expressions (30), (36) and (38) and assuming an arbitrary
fixed pressure at 0,0. From equation (30), for calcula-
tions along the centerline we get
aP 1

= = F = ————(35. | - 4S8
oX 2 EH2(DiD)? " 2,j

1

4H5(DiD)“[(SZ,j+l) (8

z,j_l)zl (81)

1
(RN) (DiY) (DiD

)[2(DiD-H+biB)w - (DiD+H+DiB) W

2,3 3rj].

For steady state solution, the second term will be iden-

tically zero. Along the wall, an approximation to (36) is

needed.
oP G+DiD )
3% = Fz - 2@ &tWi,5+1 ~ Wi,5-1
G(3WM,j - 4WM"l,j + WM_Z'J)] (82)
1

" ZHE(RN) (bip) (OiYy o DIV Wy, - 4[PiD(1-H) + DiB]:

. WM—l,j + [DiD(1-2H) + DiB]WM_Z'j .

At the ends, X = 0 and X = 2C, some of the quantities in

(76) must be redefined such that
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Sx = Si,z - Si’N-l

SXX = Si’z + Si'N-l - 2S"

w (83)

SYX = 8;47,2 = Si-1,2 = Si+1,8-1 * Si-1,§-1

~with the other quantities remaining the same. The finite
difference approximation to equation (38) then may be

written as

9P DiD p-1l p-1
5% = ToE oy \3(5i,2 - Si,n-1) - 4(8§,2 - Si,N-1)

+ G[3(S, s y - a4(sP7L | -

p-2 _ P~ -
+ S' Si' l+l’j i"‘l'j l+lpj

2
1'2 N""l

(DiD) (52)?
4H% (DiY) ?

p-1 p-2 _ oP-2

ir1,35 ~ ®i-1,3 - (84)

(SZ) (SYZ) (8Y) (s522) DiD - .
sET (V) 2 T 287 (Div)? T ZERNLVi.2 T Mi,N-1t

Wi 1,5 ~ Wi-a,501 .

Finite Difference Form of Bubble Boundary Conditions

Since in the X,Y plane, the bubble interface is a
line segment on the X axis, it is convenient to redefine

the symbols used in (76) as

SX = Si,j"‘l - Si,j"‘l (85)
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SXX = Si,j+l + Si,j"l -ZSi'j

SY = =~ 3Si,j -+ 4Si+l'j - si+2,j

Si+3,3

SYX = =3(S; 541 = Si,5-1) * 405441, 541 7 Sie1,j-1)
(Si42,9+1 = Si+2,§-1) (85)

SZ = SX + G » §Y

S%ZZ = SXX + X H(Gx+GGy)SYS+ X G.SYX + G2sYY

SYZ = SYX + ZHGYSY + 4G SYY

The finite difference form of equation (46) then is

1 .1 1
Pl:j = Pin ~ W[pl * E-;.-] *
1 8% L SY?7 1 - (.d_E.Bi.)Z]
dFB, ,. |H(DiB)2  2H2 (DiD) (DiB) dx
RN[1 +(gx) %]
(86)
SY SYY S2% _dFB

+ Z[ZH(DiY)z(DiD)F_ Hz(Din?(DiB)+ HZ(DiB}dX

This equation yields the pressure in the liquid at the
bubble surface.
Since equation (24) must also be satisfied at the

bubble surface a finite difference form of this equation
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can be used to solve for the stream function at the
bubble surface. Forward difference approximations to
derivatives with respect to Y must be used. Since the
pressure at the bubble surface is determined at the
surface by equation (86), a quadratic algebraic equation
for Si,j results. See the appendix for development of

~ this expression and forms for Ay, By and Cl'

S (87)

- 2 _ 47
=By +\ B2 - 4a,cy
1.3 2a

1

The zero shearing stress condition at the bubble
surface, equation (50), will be satisfied by making the
usual finite difference approximations and then sdlving

for S, 5 from the resulting algebraic equations. Thus
, _

we obtain

1 ‘
+ ~ . + . - .
BIB{SYX 2H Gy( 351,3 452'3 S3,J)

_ _ H+SX

j 'j ’j 'j

HG
R .+ -
= 351' 48 I

DiB J 2,3 - S3

'3

+ 48 )

- [(—X - ¢ ) (28, , - 58

. . - 8 .
DiD? J 2,3 3,3 4,3

1

H
2(pID.DiB * Ox * §y0) (=38 4 + 455 5 = S35 ¥

J v J rJ
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drB
- SXX = % G+SYX][1 - (Fx) %] = 0 (88)

and from this,
s = - B,/A (89)

where

_ 8GyH 20G  4HG,dFB A 2
By = Ipin - bip - pislax * [5GGp7 - 67

1l dFB
+ 2H(5TyepIp + Gx + GO 1[1 - (g *]

SYX _ 2GyH
B, = [pip + pip (~35;,5 - S3,5) ¥

4G - H.SX
DID(281,3 * %53,5 = S4,5) " DIY
HeG dFB
- [« . G2%) (28 + 48 - 8 )
DiD? 1,3 3,3 4,3
H 1
" 25iypip * Gk ¥ Gy® (738, 5 - 85, 9)

- SXX + % G + SYX][1 - (%%5)2];

The vorticity at the bubble surface can be calcu-

lated using forward differences in equation (23).
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_ 1 .SYY H SY
W5 = " WFDIB:bipT ~ Z(oIp)(piEY * S2% - (90)

For a completely spherical bubble in which surface
tension forces are very large, the pressure boundary con=-
dition (86) is not suitable and the pressure need not
enter the calculations exolicitly. The stream function
‘distribution on the bubble surface is specified in terms
of the translational velocity of the bubble according to
equation (56). Therefore, for this case, equation (87)
must be replaced by an integration along the bubble in the
X,Y plane.

At grid points not at either end of the bubble

S =S + H Vg FB(Z~-H/2) FB(2-H/2), (91)

1,j 1,5-1

where Vo is the translational velocity of the bubble.
At each end of the bubble, special formulas are needed
when the bubble does not end on a grid line. At the
end of the bubble nearer the origin of the axes, for the

first grid point on the bubble

(1-a)? (1-a) . drB

Sl,j = m Sl,j+l + H FB(X) X VT ' (92)

where (l-o) is the fraction of one grid width between

the point in question and the end of the bubble. Equation
(92) takes into account the fact that on the centerline
8=0. At the other end of the bubble, for the last grid

point on the bubble,
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—r)2
(1-8)%8) 51
BUE=2)

(1-8) drB
T H FB(X) 5= Vo o (93)

51,3

where (1-B) is the fraction of a grid width between the
point in question and the end of the bubble. Again,

equation (93) includes the effect of S=0 on the centerline.



IV COMPUTER SOLUTIONS TO DIFFERENCE EQUATIONS

Three basic computer programs were used to solve the
difference equations in Chapter III. These programs were
written for (1) the steady state flow of liquid only,

(2) the time-dependent flow of liquid only and (3) the
time-dependent flow of liquid containing gas bubbles.
Fortran IV coding was used and the programs run on the
University of Alabama's IBM 360 Model 50 computer and the
UNIVAC 1108 located at the University Research Institute
in Huntsville, via the remote terminal at the Tuscaloosa

campus.

Steady State Program

Figure 5 is a flowchart for the steady state program.
The calculations were startéd by reading the parameters
governing the fluid flow, tube geometry and numerical grad
and making an initial guess for S and W which was similar
to that of fully developed laminar f;ow in a tube. Gauss-
Seidel iteration with a relaxation factor was then used
to iterate to a steady state solution when possible, With
a converged solution for S and W, the pressure and veloci-
ties were calculated from subpregrams. The data were then
printed in tabular form and as plots drawn using special

-63-
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Figure 5a. Flowchart for Steady State Program
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routines for the standard on~line printers. To improve
the efficiency of the calculations, for a fixed tube geo~-
metry and grid size, calculations for several different
Reynolds numbers were made during one computer run. For
all Reynolds numbers after the first, the flow field for
the previbus Reynolds number was used as a guess for get-
~ting the next iteration started. Typicai run times on
the IBM machine for a particular solution with a grid

mesh of 1l by 21 were from three to five minutes.

Time~Dependent Program

A flowchart for fhe program for time~dependent flow
without gas bubbles is given in Figure 6. The usual
method of starting the calculations in this case was to
assumé¢ that for time less than zero the fluid was at rest
and at time zero require the filowrate to be a constant.
Since the fluid was initially .4t rest, the flow was every-
where irtotational at time.zere, except at the wall. This
means that the initial vorticity would be everywhere zero
except at the wall where a region of concentrated vorticity
would exist due to the no slip tondition. In this type
of start-up, the main flow fieild is potential with a vis-
cous boundary layer near the wall which grows until a
fully developed viscous flow fiills the entire tube. The
advantage of this type of initial condition is that it is

physically reasonable and that in the computer program one
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simply sets the vorticity to zero in the main field and
at the wall calculates the vorticity by equation (89).

Iteration on the time integration as well as the spa-
tial integration was required because the difference equ-
tions were implicit on time. To speed up the convergence
process, Gauss-Seidel iteration with a relaxation parameter
‘was used. Also a variable time step was used [5]. When
the number of iterations required for convergence at a
given time step were less than an arbitrary number,
usually two, the time step was doubled. When it was
greater than an arbitrary number, usually twenty-five,
the time step was halved.

Since the IBM machine was more accessible than the
UNIVAC, although considerably slower, these runs were made
on the IBM machine in short blocks of approximately
twenty minutes by storing the data at the end of one run
on a direct access disk and restar;ing at that point with
the next run. Using this ﬁethod, approximately one hour
of running time was needed to reach a reasonably steady
state with 11 by 21 grid mesh. The data were printed at
selected times in the form of tabulated data, streamline

and velocity plots.

Bubble Program

The calculation of flows with gas bubbles includes
all of the features of the time-dependent calculations

described in the previous section with the additional



70

requirements that the bubble boundary conditions be
satisfied and the location of the bubble be determined by
integrating the velocity in time. For the calculations in
which the pressure boundary condition was used for the
bubble, the pressure field was calculated along with

the stream function and vorticity. Figure 7 is a flow-
chart of the computer program to perform the calculations.
'As indicated in Figure 7, the calculations for points

away from the bubble are the same as for time-~dependent
flow without bubbles.

The calculations on the bubble surface were performed
from separate subprograms. Figure 8a is a flowchart for
the calculations using the pressure boundary condition.
The pressure inside was calculateéd from equation (86),
using the pressure in the liguid at the tail of the bubble
which was known from the integration of equation (81).

At the nose a reverse process was used, since the pressure
inside  the bubble was constant, to obtain the pressure in
the liquid at the centerline so that the integration of
equation (8l) could continue. ‘The pressure, stream
function énd vorticity near the bubble were calculated
from equations (86), (87), (89) and (99) as described in
Chapter ‘III.

Figure 8b is a flowchart for the bubble surface
subprogram using the velocity boundary condition for a

soherical bubble. The translational velocity of the
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bubble was obtained.by taking the average of the velocity
calculated at the end of the bubble, The stream function
distribution in the liquid flow one grid width away from
the centerline was linearly extrapolated to each end of

the bubble to determine these wvelocities. Since the flow
pattern was quite different at the two ends of the bubble,
these velocities did not agree in general. This is a
‘limitation of the finite difference approximations and

the translational velocity was assumed to be the average of
the two. From this value of the translational velocity,
the stream function on the bubble surface was obtained,

The iterations were carried out until agreement between the
bubble boundary conditions, the translational velocity,

and the liquid flow was obtained.

Because of the nature of the transformation used,

it was necessary to keep a bubble vositioned so that neither
end was very close to a grid line. This was accomplished
in the computer programs by letting the bubble move only

in specified increments and choosing the bubble radius
correctly. Best results were obtained by taking the incre-
ment as: one grid width. The bubble was not allowed to move
until the integral of the velocity in time became equal to
or greatér~than the specified increment. After the bubble
was moved to a new position, the integral or disvlacement
function was reduced by the bubbille increment and allowed to

build up again until the next bubble increment. The number



76

of time steps between bubble increments varied from three
to seven, depending upon the translational yelocity.

To improve the convergence of the calculations €for
the case of the pressure boundary condition on the bubble
a special iteration procedure was used. The method used
was that at the beginning of a given time increment, in-
cluding the first, the values for stream function, 8§, on
‘the bubble surface were held fixed until the rest of the
field converged by iteration. Then the values of S on the
bubbles were relaxed to be compatible with the rest of the
flow field. Finally, the standard Gauss-Seidel iteration
method was used until convergence was obtained. Then time

was advanced, and the above procedure repeated.



V RESULTS

The function which describes the shape of the tube
has been assumed to be a general continuous periodic
function of the distance along the tube axis. However,
for the numerical computations in this study the parti-

cular function used was

FB(2) = 1-A cos{mZ2/C)

with the value of C taken to be one, By varying the wvalue
of A, different degrees of "waviness" could be obtained.
Although data were obtained for values of A from zero to
one-half, that presented in this chapter are for A=0.25,
except for some bubble results for A=0. This degree of
waviness was chosen arbitrarily since the qualitative
aspects of the flows do not change with variations of A
in the region investigated and more meaningful comparisons

can be made by using the same value of A.

Steady State Flow

Pigures 9, 10 and 11 are streamline plots from a

standard digital printer with streamlines drawn in by

-77-
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hand. The subroutine which generated this output used
linear interpolation to f£ind the location of specified
values of stream function. A unique digit was used for
each streamline although the digit does not necessarily
have any relation to the value of stream function.

Figures 9, 10 and 1l show the effect of increasing
Reynolds number on steady state solutions for a fixed tube
geometry. For sufficiently low Reynolds number, the flow
is completely attached everywhere in the tube as shown in
Figure 9. Although the Reynolds number is only 5 in this
case, the flow pattern is slightly unsymmetrical, showing
the effect of fluid inertia.

In Figure 10 a separated flow region has developed
in the diverging section of the tube, indicated by the
closed streamline for S=0.5. Since this is a steady
state solution, this corresponds to a ring vortex standing
in the diverging cross sectiong of the tube.

In Figure 1ll, for Reynolds number 20 and the same
tube geometry, the separatéd fiow region has grown to
£fill almest all of the "valley" formed by the diverging
section. From the streamline pattern, it is seen that
the effective flow area is detérmined by the minimum
radius of the tube.

Figure 12 is a plot of dimensionless axial pressure

gradient times Reynolds number versus Reynolds number for

three values of A. The dotted line is the pressure drop
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relationship predicted analytically for A=0, that is,
Poiseuille flow. This plot shows that the effect of
increased tube "waviness" is a rather large increase in
pressure loss.

It was found that in order to obtain convergent
steady state solutions, it was necessary to reduce the
relaxation parameter w as the Reynolds number was in-
creased. The values plotted on Figure 12'include the
maximum Reynolds number for which solutions were obtained
by using values of w from 1.0 to a minimum of 0.5 Most
of these calculations were made with a grid width H of

0'10

Time—Dependeﬁt Flow of Liquid Only

Figure 13, 14 and 15 are streamline plots for a
Reynolds number of 25 and A=0.,25 for three different
wvalues of dimensionless time, with time measured from
the impulsive start described in Chapter II. These plots
were drawn using the same technique as for the steady
state case.

Figure 13 is for T=0.02, which is very soon after
start-up. The flow pattern is symmetrical with respect
to the center of the section since the main flow is
potential flow at this time, with a thin viscous boundary

layer near the wall. At a later time, T=0.50, in Figure
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14 the flow has become separated in the diverging
section with a corresponding shift in the other stream=-
lines. 1In Figure 15, the flow has approached a steady
state pattern for T=5.0. Concerning the dimensionless
time scale, a value of T=1.0 corresponds to the physical
time required for a particle moving with the average
fluid velocity to move a distance of one tube radius.

Exact quantitative correspondence between the steady
state solutions and time-dependent solutions for large
values of time was not obtained. This can be seen by
compariﬂg Figures 11l and 15. Although the Reynolds num-
ber is 25 for the time-dependent solution shown in Figure
15, a comparison can be made with the steady state
solution of Figure 1l which is for a Reynolds number of
20. The vortex in Figure 15 is smaller than the one in
Figure 11, but a decrease in the Reynolds number from
25 to 20 would result in a still smaller vortex. This
difference is expected sipce the time-dependent solu-
tions were not carried to a steady state due to the
excessive computer time required. However, another
source of difference is that the iteration procedures
and equations for steady state and time-dependent solu-
tions were completely different. The intermediate
iterations to a steady state solution have no physical

significance whereas the time-dependent solution models
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the physical flow at each time step. Also, after drop-
ping thHe time derivatives from the time~dependent
egquations, algebraic manipulations were performed co
yield suitable iteration equations for the steady state
case. The resulting equations were of a rather different
form than the differential equations, as was pointed out
in Chapter III. However, the steady state solutions and
AEime—dependent solutions for large values of time do agree
qualitatively for the results obtained.

Figure 16 shows velocity profiles in the X,Y plane
for four cross sections in the tube. These data correg-
pond to the streamline plots of Figure 14, The effect
of convergence and divergence of the tube and the fluid
inertia may be seen by the different shapes of the veloc-
ity profiles for the four cross sections chosen, For
flow with no inertia effects identigcal profiles would

exist for X=C/2 and X=3C/2.

Time-Dependent Flow with Bubbles

Although numerical solutions for arbitrary bubble
shapes were not obtained and only limited solutions for
spherical bubbles with the~pressure'boundary conditionju
were obtained, the case of spherical bubbles with the
velocity boundary condition for several values of the

parameters was numerically solved. In this section some
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of the solutions are presented and in the following
section the principal difficulties encountered in the
bubble calculations are discussed.

For the case of spherical bubbles using the pressure
boundary condition; the Weber number was taken to be
numerically very small and the bubble assumed to be
spherical. These results presented here are for a
,étraight wall tube, and the extension to a wavy wall tube
is straight forward. The parameters governing the flow
were systematically varied in seeking convergent solutions.
Although solutions for more than the first few fime steps
were not obtained, it was found that best results were
obtained for Reynolds numbers of from 10 to 50 and for
dimensionless body force values for from 2 to 5. These
values of body forece would decrease the velocity of a
bubble relative to the average fiuid velocity.

Figure 17 is a streamline plot of time T=0 with a
Reynolds number of 50, a bubble radius of 0.275, a Weber
number of 0.005, and a body force of 3. Because the plots
from the digital printer could not be drawn to the same
scale in the horizontal and vertical directions the bubble
does not appear as a true semicircle. Figure 18 is a
streamline plot at T=0.0l, after ten time steps, with
the other parameters remaining the same. For later time
steps the calculations began to diverge as was typical of

the cases using the pressure boundary condition. Since
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convergent solutions could not be obtained for more than
ten time steps the solution was not extended to a wavy
wall tube.

Using the velocity boundary .condition, solutions were
obtained for a bubble moving near one end of a typical
tube section to near the other ‘end. Since it was desired
to study the motion of bubbles in a viscous flow, an
approximation to a fully deveolped viscous flow pattern
for the liquid was used as an initial condition. However,
only the solutions for the smallér bubbles and Reynolds
numbers cdh be considered to have approached a steady
state. As the bubble size increases, the initial guess
to a fully developed viscous £1l6w is less accurate. Also,
for the wavy wall cases, the above effect is combined
with the effect of a bubble moving through the changing
cross section of the tube. The bubbles shown in Figures
19 through 26 are all spherical, ‘but do not appear so
due to the differences in the vertical and horizontal
scales of the computer plots. Al of the results are

for a grid of 21 by 41 with H=0.65 and E=0.002.

Figure 19 is a streamline plot for a bubble of
radius 0.1375 moving with a velocity of 3.2 at this
instant with the average fluid velocity being 1.0 as it

is for all of the flows considered. The tube wall is
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straight, that is A=0, and the Reynolds number of the
liquid flow is 10. Sixty four time steps have elapsed
since starting the calculations. For fully developed
flow in a straight wall tube, the dimensionless velocity
at the centerline is 2 so that the bubble has a velocity
approximately 50% greater than the neighboring fluid
particles would have if the bubble were not present. As
can be seen by the streamline pattern, the general flow
far away from the bubble is not greatly disturbed by

the presence of the bubble.

Figure 20 is a streamline plot for flow in a straight
wall tube with a liquid Reynolds number of 10 and a bubble
radius of 0.1875. The bubble velocity is 7.0 and 84 time
steps have elapsed since beginning the calculations. At
later time steps these calculations diverged as the flow
pattern became more disturbed. Perhaps a smaller grid
size would have allowed the calculations to converge for
the more disturbed flow, but current computer storage
capacity and speed made this unfeasible. Howevex, this
flow pattern is of interest because it shows the marked
change in the flow with the increase in the bubble size
and Reynolds number.

Figures 21, 22 and 23 are streamline plots for a
bubble of radius 0.1375 in a wavy wall tube with A=0.25.

The ligquid Reynolds number is 1.0. In Figure 21, the
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bubble is centered at Z=0.55 and 29 time steps have
elapsed since beginning the calculations. The bubble
velocity at this instant is 4.0. In Figure 22, the
bubble is centered at Z=1.0 and has a velocity of 2.8.

At this point 94 total time steps have been taken. 1In
Figure 23 the bubble is centered at Z=1.75 and has a

- velocity of 4.4. The total number of time steps at

this point is 214. At this low Reynolds number and small
bubble radius the general flow pattern is not greatly
disturbed by the motion of the bubble as was the case for
the straight wall tube with Reynolds number of 10, shown
in Figure 19.

Figures 24, 25 and 26 are streamline plots for a
bubble of radius 0.1875 in a wavy wall tube with A=0.25
and a Reynolds number of 10. In Figure 24 the bubble is
centered at %=0,65 and has a velocity of 5.5. Thirty
four time steps have been taken at this point since the
beginning of the calculations. In Figure 25 the bubble
is centered at %Z=1.0 and has a velocity of 6.1. The
total number of time steps at this point is 64. In Figure
26 the bubble is centered at Z=1.35 and has a velocity of
7.7. Eighty nine total time steps have been taken at this
point. For later times these ealculations also diverged
as those described in the discussion of Figure 20.

Convergent solutions were not obtained for bubbles



86

of larger size or for Reynolds numbers of 25 or greater

except for a few time steps.

Problems Encountered in the Bubble Calculations

Three principal areas of difficulty may be identified
for the case of time-dependent flow including bubbles:
(1) the discontinuous derivatives of the coordinate trans-
-formation at each end of the bubble, (2) the difficulty
in obtaining accurate numerical values of curvature for
an arbitrary bubble shape, and (3) divergence of the cal-
culations using the pressure boundary condition. These

will be discussed separately in some detail.

Coordinate system singularity. At each end of the

bubble where the tube centerline intersects the bubble
surface, the derivative of the bubble radius with respect
to the axial coordinate becomes infinite due to the axial
symmetry. Due to the nature of the coordinate trans-
formation used the angle between the X and Y coordinate
lines in the R,Z plane at this point becomes zero and
both are parallel to the R direction. Therefore, the
expression for derivatives with respect to Z becomes
useless. However, for numerical approximations, this
singularity may be avoided if it can be arranged to have

the bubble positioned so that a grid line in the Y
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direction never gets very close to these critical X
coordinates. This was accomplished for a spherical
bubble by choosing the ‘initial position and radius
correctly and allowing the bubble to move with a constant
step as described in Chapter IV. For changing bubble
shape such a procedﬁre might not be possible.

This problem would not arise if the bubble shape
‘were not transformed to a segment of the centerline.
However, using finite differences, the difficulties 6f
the coordinate system not matching the bubble boundary
lead to a tedious group of algebraic equations for the
boundary conditions. This method was tried in the course
of the study and because of the amount of algebraic labor

involved it was rejected.

Calculations of bubble curvature. The nature of the
boundary condition on pressure, equation (46), requires
an accurate determination of tHe bubble curvature. For
the case of a general bubble shape this was found to be
a major problem in seeking numerical solutions. The
bubble shape and position at given time can be determined
by numerically integrating the velocity in time. This
yields the location of a set of points on the bubble
surface. From these points, the first and second deri=-
vatives of the bubble boundary with respect to the axial

direction must be calculated, It is well known that the
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determination of second derivatives from discrete data

is subject to large error. This inaccuracy would then
magnify any error in the location of points on the sur-
face. If the bubble shape does not change and may be
specified by a continuous function such as the equation
of a sphere this is no longer a problem. Although other
difficulties exist for the case of a general bubble shape
this was the initial reason for restricting the calcula-

tions to the case of spherical bubbles.

Divergence of calculations using pressure boundary

condition, If the Weber number in the pressure boundary
condition (46) is made very small, the resulting bubble
shape should approach that of a sphere. Because of the
problems encountered in calculating curvatures, attempts
were made to obtain solutions for spherical bubbles by
making the Weber number in equation (46) very small with
the hope of showing that the wvelocities obtained would
result in an approximately spherical bubble. These cal-
culations were well behaved for a number of iterations.
However, after a certain number they began to diverge,
Slowly at first but finally becoming meaningless. The
divergence usually could be seen to begin between 50 and
100 total iterations. The cause of the divergence was

not determined.
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Figure 21. Streamlines for Flow with Bubbles
using Velocity Boundary Condition
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Figure 23. Streamlines for Flow with Bubbles
using Velocity Boundary Condition

RN=]1.0, A=0.25, C=1.0, Bubble Radius=0.1375
Zo=1.75, VT=4.4, T=0.428
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VI CONCLUSIONS AND RECOMMENDATIONS

The problem of the flow of a viscous liquid with
gas bubbles in an infinitely long, wavy wall tube has
been formulated. Numerical solutions were determined for
the steady state flow of the liquid in the absence of gas
bubbles and for time~dependent flow both with and without
gas bubbles.

The coordinate transformation used simplified the
‘geometry and made the application of boundary conditions
much easier. Because of a singularity in the transformed-
coordinate system at each end of a bubble, a specialized
technique for repositioning a bubble during its motion
was used. However, overall the transformation was found
to reduce the labor in obtaining numerical solutions. This
general type of transformation should be useful for numer-.
ical solutions to other types .of problems with boundaries
which do not coincide to standard coordinate systems.

The steady state solutions showed the presence of
ring vortices standing in the divergent sections of the
tube for sufficiently large .Reynolds numbers . Also,‘gn
increase in waviness of the tube resulted in a large
increase in pressure loss. The time~dependent solutions
in the absence of gas bubbles showed the development of the

107
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viscous flow pattern with time and the production and
growth of vortices in the divergent sections. These
solutions approached a steady state for large values of
time and were in qualitative agreement with the steady
state solutions obtained. For .a straight wall tube the
numerical solutions were in good agreement with Poiseuille
flow in a pipe.

The time-dependent solutions for flow with gas
bubbles using the velocity boundary condition showed that
‘the velocity of relatively small spherical bubbles was
from two to eight times the average velocity of the liquid.
Even for very low Reynolds numbers, large velocities of
bubbles relative to the liquid were found with correspond-
ing large disturbances in the liquid flow pattern.

Although the problem of the motion of arbitrarily shaped
gas bubbles was formulated, numerical difficulties made
it possible to obtain solutions for spherical bubbles only.
The limited solutions using the pressure boundary condition
should not be considered conclusive since the calculations
diverged after a few time steps.

To make a general study of the motion of gas bubbles
moving in a visdous liquid which flows in a tube, with
either changing or constant cross section, the bubble
shape should be allowed to vary according to the liquid
flow. However, unless some means can be found to express

the bubble shape in terms of analytical expressions, the
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inherent error in numerically calculating the bubble
curvature will be a major problem. A possible technique
would be to assume the shape as a sum of a series of
ellipses with undetermined parameters. With logical cri-
teria for determining these parameters, this could be com-
bined with a finite difference solution for the liquid flow,
which is we;l suited to solving the equations of motion for
ﬁhe liquid.

Since a coordinate system which does not coincide to
the bubble boundary causes the application of the boundary
conditions to be very tedious, some type of transformation
should be used. If the bubble shape were constrained to
be constant, then perhaps .a coordinate transformation
could be found which left.the bubble shape unchanged but
caused the wall to coincide to a coordinate line. This
would avoid the difficulty encountered in this work with
the discontinuous derivatives at the ends of the bubble.
However, the type .of transformation used in this study can
be used with a bubble of changing shape.

For arbitrary bubble shapes, pressure appears explic-~
itly in the boundary conditions. Therefore, it would be
advantageous to have the eéuations.fér.the liquid flow
writtén with pressure as a fundamental variable, rather
than an auxiliary variable. Also, this would allow
the boundary conditions at the ends of a finite tube to

be specified in terms of pressure.
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The use of a larger and faster computer would allow
the use of a smallexr grid size in the solutions for the
motion of bubbles using the velocity boundary condition.
This could improve the accuracy in determining the trans-
lational velocity of the bubbles and allow the calculations
to converge for more disturbed flow pattexrns. Also, the
motion of a bubble could be followed through more than one
wavelength of the tube. The calculation of a drag cceffid";
cient for a bubble would allow more meaningful comparisons

to be made with other results,



APPENDIX

In order to determine the stream function at & par-

ticular point on the bubble surface using the pressure

boundary condition a finite diffexence .form of equation
(24) is used with forward differences for Y derivatives

Let

SX = 51,9¢1 7 51,31

S ) + 4(s

Jj+l - lvj'l S )

SYX = - 3(8, 2,5+1 7 52,3-1

(83,441 = 53,50 (a-1)

BY = = 3 .+ 4B, , = B_ ,
BllJ 2,3 3.3

BYY = 2B, , ~ 5B + 4B, . - B

BXX = B

Then from (24) we get
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( 1,3 2,3 3,3) G= (-3 1,3 52:3 3:3)
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Equation (A-2) is a quadratic algebraic equatioh for Si,j’

Therefore,
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S
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1 2
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